By Topic

Two Cloud-Based Cues for Estimating Scene Structure and Camera Calibration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nathan Jacobs ; University of Kentucky, Lexington ; Austin Abrams ; Robert Pless

We describe algorithms that use cloud shadows as a form of stochastically structured light to support 3D scene geometry estimation. Taking video captured from a static outdoor camera as input, we use the relationship of the time series of intensity values between pairs of pixels as the primary input to our algorithms. We describe two cues that relate the 3D distance between a pair of points to the pair of intensity time series. The first cue results from the fact that two pixels that are nearby in the world are more likely to be under a cloud at the same time than two distant points. We describe methods for using this cue to estimate focal length and scene structure. The second cue is based on the motion of cloud shadows across the scene; this cue results in a set of linear constraints on scene structure. These constraints have an inherent ambiguity, which we show how to overcome by combining the cloud motion cue with the spatial cue. We evaluate our method on several time lapses of real outdoor scenes.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:35 ,  Issue: 10 )