By Topic

Robust Perceptual Image Hashing Based on Ring Partition and NMF

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhenjun Tang ; Dept. of Comput. Sci., Guangxi Normal Univ., Guilin, China ; Xianquan Zhang ; Shichao Zhang

This paper designs an efficient image hashing with a ring partition and a nonnegative matrix factorization (NMF), which has both the rotation robustness and good discriminative capability. The key contribution is a novel construction of rotation-invariant secondary image, which is used for the first time in image hashing and helps to make image hash resistant to rotation. In addition, NMF coefficients are approximately linearly changed by content-preserving manipulations, so as to measure hash similarity with correlation coefficient. We conduct experiments for illustrating the efficiency with 346 images. Our experiments show that the proposed hashing is robust against content-preserving operations, such as image rotation, JPEG compression, watermark embedding, Gaussian low-pass filtering, gamma correction, brightness adjustment, contrast adjustment, and image scaling. Receiver operating characteristics (ROC) curve comparisons are also conducted with the state-of-the-art algorithms, and demonstrate that the proposed hashing is much better than all these algorithms in classification performances with respect to robustness and discrimination.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:26 ,  Issue: 3 )