By Topic

DC-DC converter with fast transient response and high efficiency for low-voltage microprocessor loads

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Arbetter, B. ; Dept. of Electr. & Comput. Eng., Colorado Univ., Boulder, CO, USA ; Maksimovic, D.

The paper describes a DC-DC power converter for use with low voltage microprocessor loads. The control method is a hysteretic current-mode control in the continuous conduction mode which has fast transient response. At light loads, the power converter operates in the discontinuous conduction mode using a peak current control method which causes the switching frequency to be proportional to load current, thus maintaining high efficiency in a very wide range of loads. The control method implementation, transient response and output inductor design equations, and equations for designing an input filter to reduce input current di/dt are provided. An inductor current estimator which provides higher efficiency, good transient response, and current limiting, is presented. Experimental results for a 5.0 V input, 3.1 V output, 13 A DC-DC converter are included to verify the theoretical information

Published in:

Applied Power Electronics Conference and Exposition, 1998. APEC '98. Conference Proceedings 1998., Thirteenth Annual  (Volume:1 )

Date of Conference:

15-19 Feb 1998