By Topic

Application of a Composite Differential Evolution Algorithm in Optimal Neural Network Design for Propagation Path-Loss Prediction in Mobile Communication Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Sotiroudis, S.P. ; Radiocommunications Laboratory, Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece ; Goudos, S.K. ; Gotsis, K.A. ; Siakavara, K.
more authors

In this letter, we present an alternative procedure for the prediction of propagation path loss in urban environments, which is based on artificial neural networks (ANNs). The correct selection of a neural network size can increase its response speed and therefore increase the overall system performance. We apply a recently proposed Differential Evolution (DE) algorithm, namely the Composite DE (CoDE) in order to design an optimal ANN for path-loss propagation prediction. CoDE uses three different trial-vector generation strategies with three preset control parameter settings. We compare CoDE with other popular DE strategies. We present two different ANN design cases with two and three hidden layers, respectively. The general performance of both the ANNs shows their effectiveness to yield results with satisfactory accuracy in short time. The received results are compared to the respective ones yielded by the ray-tracing model and exhibit satisfactory accuracy.

Published in:

Antennas and Wireless Propagation Letters, IEEE  (Volume:12 )