By Topic

Not every friend on a social network can be trusted: Classifying imposters using decision trees

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fong, S. ; Dept. of Comput. & Inf. Sci., Univ. of Macau, Macau, China ; Yan Zhuang ; Jiaying He

There is an alarming news recently revealed on media that 8.7 percent of users on Facebook are fake; this amounts to more than 83 million accounts worldwide. Consequently this huge number of fake users whose profiles were unverified translates to the potential dangers ranging from espionage, identity thievery, information misuse and loophole to privacy compromise to the users and their families. Nowadays with the popularity of online social networks (OSN), it is easy to footprint a potential target from the information easily trawled from the Web. Anyone can simply impose as somebody else that s/he claimed to be, without checking whether the information is genuine or not. For example it is so easy to impersonate one's identity on OSN by supplying fake photos and false names, which will go preemptively unchecked by Facebook. In this paper, a preliminary experiment of applying decision tree classification algorithms is presented, for identifying imposters from a pool of “friends” in Facebook. The classification approach is similar to that of classifying spams from legitimate emails except the attributes of a user's account is taken into consideration instead of text-mining the message contents. An accuracy of 92.1% is demonstrated to be achievable using the classification techniques.

Published in:

Future Generation Communication Technology (FGCT), 2012 International Conference on

Date of Conference:

12-14 Dec. 2012