By Topic

Modeling of the infrared photodetector based on multi layer armchair graphene nanoribbons

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ahmadi, E. ; Faculty of Physics, University of Tabriz, Tabriz, Iran ; Asgari, A.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.4794494 

Armchair graphene nanoribbons (A-GNRs), an alternative material for Infrared (IR) photodetectors, attract more attention because of those tunable energy gaps by changing the width of nanoribbons and the height of interband transition. In this paper, we calculate the dark current limited detectivity, D*, of the multi layer A-GNR based IR photodetector. For this purpose, we find the band structure of A-GNRs by tight-binding model and by considering the edge deformation, the absorption coefficient using the single electron approximation, the quantum efficiency, and the optical responsivity of photodetector. Then, the dark current of photodetector has been calculated by considering two contributions: (i) The interband tunneling generation and (ii) the thermogeneration due to the optical and acoustic phonon and line edge roughness (LER) scattering in the A-GNRs. Finally, we optimize the dark current limited detectivity of the photodetector for different structural parameters. The obtained results show that for the single layer A-GNR based photodetector with W = 5 nm, L = 20 μm, Vb = 2 V, Vg = 2 V, maximum value of dark current limited detectivity, D*, at T = 300 K is ∼2.2 × 108 (cm Hz1/2/W) and at T = 77 K is ∼2.1 × 1011 (cm Hz1/2/W). Also, for narrow A-GNRs, D* increases with increasing the gate voltage, while for wider A-GNRs decreases with increasing the gate voltage. Moreover, the dark current limited detectivity increases with increasing the number of the A-GNR layers.

Published in:

Journal of Applied Physics  (Volume:113 ,  Issue: 9 )