By Topic

Multi-Stage Robust Unit Commitment Considering Wind and Demand Response Uncertainties

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chaoyue Zhao ; Department of Industrial and Systems Engineering, University of Florida, Gainesville ; Jianhui Wang ; Jean-Paul Watson ; Yongpei Guan

With the increasing penetration of wind power into the power grid, maintaining system reliability has been a challenging issue for ISOs/RTOs, due to the intermittent nature of wind power. In addition to the traditional reserves provided by thermal, hydro, and gas generators, demand response (DR) programs have gained much attention recently as another reserve resource to mitigate wind power output uncertainty. However, the price-elastic demand curve is not exactly known in advance, which provides another dimension of uncertainty. To accommodate the combined uncertainties from wind power and DR, we allow the wind power output to vary within a given interval with the price-elastic demand curve also varying in this paper. We develop a robust optimization approach to derive an optimal unit commitment decision for the reliability unit commitment runs by ISOs/RTOs, with the objective of maximizing total social welfare under the joint worst-case wind power output and demand response scenario. The problem is formulated as a multi-stage robust mixed-integer programming problem. An exact solution approach leveraging Benders' decomposition is developed to obtain the optimal robust unit commitment schedule for the problem. Additional variables are introduced to parameterize the conservatism of our model and avoid over-protection. Finally, we test the performance of the proposed approach using a case study based on the IEEE 118-bus system. The results verify that our proposed approach can accommodate both wind power and demand response uncertainties, and demand response can help accommodate wind power output uncertainty by lowering the unit load cost.

Published in:

IEEE Transactions on Power Systems  (Volume:28 ,  Issue: 3 )