Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Surface Versus Untargeted Intramuscular EMG Based Classification of Simultaneous and Dynamically Changing Movements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Kamavuako, E.N. ; Dept. of HST, Aalborg Univ., Aalborg, Denmark ; Rosenvang, J.C. ; Horup, R. ; Jensen, W.
more authors

The pattern recognition-based myoelectric control scheme is in the process of being implemented in clinical settings, but it has been mainly tested on sequential and steady state data. This paper investigates the ability of pattern recognition to resolve movements that are simultaneous and dynamically changing and compares the use of surface and untargeted intramuscular EMG signals for this purpose. Ten able-bodied subjects participated in the study. Both EMG types were recorded concurrently from the right forearm. The subjects were instructed to track dynamic contraction profiles using single and combined degrees of freedom in three trials. During trials one and two, the amplitude and the frequency of the profile were kept constant (nonmodulated data), and during trial three, the two parameters were modulated (modulated data). The results showed that the performance was up to 93% for nonmodulated tasks, but highly depended on the nature of the data used. Surface and untargeted intramuscular EMG had equal performance for data of similar nature (nonmodulated), but the performance of intramuscular EMG decreased, compared to surface, when tested on modulated data. However, the results of intramuscular recordings obtained in this study are promising for future use of implantable electrodes, because, besides the value added in terms of potential chronic implantation, the performance is theoretically the same as for surface EMG provided that enough information is captured in the recordings. Nevertheless, care should be taken when training the system since data obtained from selective recordings probably need more training data to generalize to new signals.

Published in:

Neural Systems and Rehabilitation Engineering, IEEE Transactions on  (Volume:21 ,  Issue: 6 )