By Topic

Image Sharpness Assessment Based on Local Phase Coherence

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rania Hassen ; Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada ; Zhou Wang ; Magdy M. A. Salama

Sharpness is an important determinant in visual assessment of image quality. The human visual system is able to effortlessly detect blur and evaluate sharpness of visual images, but the underlying mechanism is not fully understood. Existing blur/sharpness evaluation algorithms are mostly based on edge width, local gradient, or energy reduction of global/local high frequency content. Here we understand the subject from a different perspective, where sharpness is identified as strong local phase coherence (LPC) near distinctive image features evaluated in the complex wavelet transform domain. Previous LPC computation is restricted to be applied to complex coefficients spread in three consecutive dyadic scales in the scale-space. Here we propose a flexible framework that allows for LPC computation in arbitrary fractional scales. We then develop a new sharpness assessment algorithm without referencing the original image. We use four subject-rated publicly available image databases to test the proposed algorithm, which demonstrates competitive performance when compared with state-of-the-art algorithms.

Published in:

IEEE Transactions on Image Processing  (Volume:22 ,  Issue: 7 )