By Topic

Dynamics Analysis and Nonlinear Control of an Offshore Boom Crane

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yongchun Fang ; Institute of Robotics and Automatic Information System, Nankai University , Tianjin, China ; Pengcheng Wang ; Ning Sun ; Yichun Zhang

This paper analyzes the dynamics of an offshore boom crane and proposes a high-performance nonlinear controller to drive the system states to track some constructed trajectories. Specifically, by employing Lagrange's method in an attached frame, a dynamic model is obtained for the offshore crane system consisting of the boom and a payload, with specific emphasis on the effect of the vessel's motion on the payload swing. Based on the model, a novel nonlinear control law is designed for the underactuated boom crane, which makes the system states track some planned trajectories successfully, even in the presence of persistent disturbance in harsh sea conditions. The stability of the designed closed-loop system is proven by Lyapunov techniques. Simulation and experimental results are included to demonstrate that the proposed control method significantly reduces the impact of the disturbance in harsh sea conditions.

Published in:

IEEE Transactions on Industrial Electronics  (Volume:61 ,  Issue: 1 )