By Topic

Semi-Supervised Video Segmentation Using Tree Structured Graphical Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Badrinarayanan, V. ; Dept. of Eng., Univ. of Cambridge, Cambridge, UK ; Budvytis, I. ; Cipolla, R.

We present a novel patch-based probabilistic graphical model for semi-supervised video segmentation. At the heart of our model is a temporal tree structure that links patches in adjacent frames through the video sequence. This permits exact inference of pixel labels without resorting to traditional short time window-based video processing or instantaneous decision making. The input to our algorithm is labeled key frame(s) of a video sequence and the output is pixel-wise labels along with their confidences. We propose an efficient inference scheme that performs exact inference over the temporal tree, and optionally a per frame label smoothing step using loopy BP, to estimate pixel-wise labels and their posteriors. These posteriors are used to learn pixel unaries by training a Random Decision Forest in a semi-supervised manner. These unaries are used in a second iteration of label inference to improve the segmentation quality. We demonstrate the efficacy of our proposed algorithm using several qualitative and quantitative tests on both foreground/background and multiclass video segmentation problems using publicly available and our own datasets.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:35 ,  Issue: 11 )