By Topic

Learning to Relate Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Memisevic, R. ; Dept. of Comput. Sci. & Oper. Res., Univ. of Montreal, Montreal, QC, Canada

A fundamental operation in many vision tasks, including motion understanding, stereopsis, visual odometry, or invariant recognition, is establishing correspondences between images or between images and data from other modalities. Recently, there has been increasing interest in learning to infer correspondences from data using relational, spatiotemporal, and bilinear variants of deep learning methods. These methods use multiplicative interactions between pixels or between features to represent correlation patterns across multiple images. In this paper, we review the recent work on relational feature learning, and we provide an analysis of the role that multiplicative interactions play in learning to encode relations. We also discuss how square-pooling and complex cell models can be viewed as a way to represent multiplicative interactions and thereby as a way to encode relations.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:35 ,  Issue: 8 )