By Topic

Shortest Path Computing in Relational DBMSs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jun Gao ; Key Lab. of High Confidence Software Technol., Peking Univ., Beijing, China ; Jiashuai Zhou ; Yu, J.X. ; Tengjiao Wang

This paper takes the shortest path discovery to study efficient relational approaches to graph search queries. We first abstract three enhanced relational operators, based on which we introduce an FEM framework to bridge the gap between relational operations and graph operations. We show new features introduced by recent SQL standards, such as window function and merge statement, can improve the performance of the FEM framework. Second, we propose an edge weight aware graph partitioning schema and design a bi-directional restrictive BFS (breadth-first-search)over partitioned tables, which improves the scalability and performance without extra indexing overheads. The final extensive experimental results illustrate our relational approach with optimization strategies can achieve high scalability and performance.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:26 ,  Issue: 4 )