By Topic

Analysis and Design of Stacked-FET Millimeter-Wave Power Amplifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Dabag, H. ; Dept. of Electr. & Comput. Eng., Univ. of California at San Diego, La Jolla, CA, USA ; Hanafi, B. ; Golcuk, F. ; Agah, A.
more authors

Stacked field-effect transistor (FET) CMOS millimeter-wave power amplfiers (PAs) are studied with a focus on design of appropriate complex impedances between the transistors. The stacking of multiple FETs allows increasing the supply voltage, which, in turn, allows higher output power and a broader bandwidth output matching network. Different matching techniques for the intermediate nodes are analyzed and used in two-, three-, and four-stack single-stage Q-band CMOS PAs. A four-stack amplifier design achieves a saturated output power greater than 21 dBm while achieving a maximum power-added efficiency (PAE) greater than 20% from 38 to 47 GHz. The effectiveness of an inductive tuning technique is demonstrated in measurement, improving the PAE from 26% to 32% in a two-stack PA design. The input and output matching networks are designed using on-chip shielded coplanar waveguide transmission lines, as well as metal finger capacitors. The amplifiers were implemented in a 45-nm CMOS silicon-on-insulator process. Each of the amplifiers occupies an area of 600 μm × 500 μm including pads.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:61 ,  Issue: 4 )