By Topic

Insights Into MUSIC-Like Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Reddy, V.V. ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore ; Ng, B.P. ; Khong, A.W.H.

In this work, we focus on a recent algorithm [Z. Ying and B. P. Ng, “MUSIC-like DOA Estaimation Without Estimating the Number of Sources,” IEEE Trans. Signal Process., vol. 58, no. 3, pp. 1668-1676, 2010], which is remarked to have multiple signal classification (MUSIC)-like performance without requiring to segregate the signal and noise subspaces. The optimization problem solved by this algorithm in each look direction is analyzed to obtain insights into the working principle of the algorithm. Besides showing the similarity between this algorithm and the MUSIC algorithm, its distinction from the Capon's estimator is also highlighted. The bounds for the sole parameter embedded within the optimization problem is also discussed. Simulation results evaluate the performance of the technique in comparison with the MUSIC algorithm.

Published in:

Signal Processing, IEEE Transactions on  (Volume:61 ,  Issue: 10 )