By Topic

Accurate motion deblurring using camera motion tracking and scene depth

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hyeoungho Bae ; Univ. of California, Irvine, Irvine, CA, USA ; Fowlkes, C.C. ; Chou, P.H.

In this paper, we propose an estimation algorithm for spatially-variant blur due to camera motion. To estimate the most accurate latent image, we integrated depth sensor (Microsoft Kinect) and IMU sensor with the camera. The joint analysis of the blurry image, IMU data and the depth data provide better recovery of the real camera motion during the course of the exposure. The reconstructed camera trajectory along with the depth map is then used to synthesize a spatially-variant blur kernel to estimate the final latent (non-blurry) image. The results show that our algorithm effectively compensates the motion blur from the original image while taking scene geometry into account.

Published in:

Applications of Computer Vision (WACV), 2013 IEEE Workshop on

Date of Conference:

15-17 Jan. 2013