By Topic

Relative ranking of facial attractiveness

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Altwaijry, H. ; Dept. of Comput. Sci. & Eng., Univ. of California, San Diego, La Jolla, CA, USA ; Belongie, S.

Automatic evaluation of human facial attractiveness is a challenging problem that has received relatively little attention from the computer vision community. Previous work in this area have posed attractiveness as a classification problem. However, for applications that require fine-grained relationships between objects, learning to rank has been shown to be superior over the direct interpretation of classifier scores as ranks [27]. In this paper, we propose and implement a personalized relative beauty ranking system. Given training data of faces sorted based on a subject's personal taste, we learn how to rank novel faces according to that person's taste. Using a blend of Facial Geometric Relations, HOG, GIST, L*a*b* Color Histograms, and Dense-SIFT + PCA feature types, our system achieves an average accuracy of 63% on pairwise comparisons of novel test faces. We examine the effectiveness of our method through lesion testing and find that the most effective feature types for predicting beauty preferences are HOG, GIST, and Dense-SIFT + PCA features.

Published in:

Applications of Computer Vision (WACV), 2013 IEEE Workshop on

Date of Conference:

15-17 Jan. 2013