By Topic

Active CMOS-MEMS dual probe array for STM based parallel imaging and nanopatterning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhang, Y. ; Dept. of Electr. & Comput. Eng., Carnegie Mellon Univ., Pittsburgh, PA, USA ; Tang, Y. ; Carley, L.R. ; Fedder, G.K.

This paper reports on development of a dual-probe scanning tunneling microscopy (STM) system suitable for scaling to 1D array parallel imaging and batch nanofabrication. The 1-D probe array is fabricated using thin-film post CMOS micromachining. Each probe is individually addressable, with its own respective microactuator and on-chip tunneling current sensing electronics. A corresponding external servo-loop array is built for separate control of probe scanning. A macro-goniometer is introduced for probe chip-sample alignment. Using the dual-probe array system, two STM images on a gold calibration sample are obtained simultaneously, and TiO2 nanowires are written on a Ti surface.

Published in:

Micro Electro Mechanical Systems (MEMS), 2013 IEEE 26th International Conference on

Date of Conference:

20-24 Jan. 2013