By Topic

Towards Scaling Up Classification-Based Speech Separation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yuxuan Wang ; Dept. of Comput. Sci. & Eng., Ohio State Univ., Columbus, OH, USA ; DeLiang Wang

Formulating speech separation as a binary classification problem has been shown to be effective. While good separation performance is achieved in matched test conditions using kernel support vector machines (SVMs), separation in unmatched conditions involving new speakers and environments remains a big challenge. A simple yet effective method to cope with the mismatch is to include many different acoustic conditions into the training set. However, large-scale training is almost intractable for kernel machines due to computational complexity. To enable training on relatively large datasets, we propose to learn more linearly separable and discriminative features from raw acoustic features and train linear SVMs, which are much easier and faster to train than kernel SVMs. For feature learning, we employ standard pre-trained deep neural networks (DNNs). The proposed DNN-SVM system is trained on a variety of acoustic conditions within a reasonable amount of time. Experiments on various test mixtures demonstrate good generalization to unseen speakers and background noises.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:21 ,  Issue: 7 )