By Topic

Technology of in situ charge promotes the development of MEMS safety and arming device

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zou Jinlong ; Science and Technology on, Electromechanical Dynamic Control, Laboratory, Xi'an, China ; Li Xiaojie ; Lei Yaru

Based on the reading and the analyzing of relative literatures, this paper introduced basic concepts and fabrication processes of two in situ charge technologies - porous silicon energetic material and converting porous metal to primary explosive based on silicon process, and analyzed the structures and working principles of the micro-donators with two in situ charge technologies. This paper also introduced latest process of explosive train of the MEMS S&A. On these bases, the structure and working principle of silicon MEMS S&A proposed by US army was discussed, and this MEMS S&A is based on in situ charge and suitable for wafer-level mass fabrication. Some views about the development of the silicon MEMS S&A were also put forward.

Published in:

Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), 2012 International Conference on

Date of Conference:

Aug. 29 2012-Sept. 1 2012