Cart (Loading....) | Create Account
Close category search window

Dynamic polarization-basis compensation for free-space quantum communications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Guangyu, Zhang ; College of Applied Science, Harbin University of Science and Technology, Harbin 150080, China ; Zhe, Yang ; Chenglong, Zhang ; Zhihan, Zhu
more authors

In polarization-encoded free-space quantum communications, a transmitter on a satellite and a receiver in a ground station each have a respective polarization zero direction, by which they encode and decode every polarization quantum bit required for a quantum communication protocol. In order to complete the protocol, the ground-based receiver needs to track and compensate for the polarization zero direction of the satellite-based transmitter. Expressions satisfied by amplitudes of the s-polarization component and the p-polarization component are derived based on a two-mirror model, and a condition satisfied by the reflection coefficients of the two mirrors is given. A polarization tracking principle is analyzed for satellite-to-ground quantum communications, and quantum key encoding and decoding principles based on polarization tracking are given. A half-wave-plate-based dynamic polarization-basis compensation scheme is proposed in this paper, and this scheme is proved to be suitable for satellite-to-ground and intersatellite quantum communications.

Published in:

Communications, China  (Volume:10 ,  Issue: 2 )

Date of Publication:

Feb. 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.