By Topic

Numerical Simulation of GaN-Based LEDs With Chirped Multiquantum Barrier Structure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Chang, S. ; S. Chang is with the Institute of Microelectronics & Department of Electrical Engineering, Advanced Optoelectronic Technology Center, Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 70101, TAIWAN.( ; Lin, Y. ; Liu, C. ; Ko, T.
more authors

The authors report the numerical simulation of GaN-based light-emitting diodes (LEDs) with either a conventional AlGaN electron blocking layer (EBL), uniform multiquantum barrier (UMQB) structure, or chirped multiquantum barrier (CMQB) structure. It is found that the 102-meV effective barrier height simulated from the LED with CMQB structure is larger than those simulated from the LEDs with a UMQB structure (90 meV) and with conventional AlGaN EBL (60 meV). With the large effective barrier height, it is found that LEDs with a CMQB structure exhibit smaller leakage current. It is also found that the maximum internal quantum efficiencies are 0.703, 0.842, and 0.887, for the LEDs with conventional EBL, UMQB structure, and CMQB structure, respectively. In addition, it is found that forward voltages simulated from the LEDs with CMQB structure and with UMQB structure are both smaller than that simulated from the LED with conventional AlGaN EBL. These results also agree well with the experimental data.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:49 ,  Issue: 4 )