By Topic

Sparse Coding From a Bayesian Perspective

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiaoqiang Lu ; State Key Lab. of Transient Opt. & Photonics, Xi'an Inst. of Opt. & Precision Mech., Xi'an, China ; Yulong Wang ; Yuan Yuan

Sparse coding is a promising theme in computer vision. Most of the existing sparse coding methods are based on either l0 or l1 penalty, which often leads to unstable solution or biased estimation. This is because of the nonconvexity and discontinuity of the l0 penalty and the over-penalization on the true large coefficients of the l1 penalty. In this paper, sparse coding is interpreted from a novel Bayesian perspective, which results in a new objective function through maximum a posteriori estimation. The obtained solution of the objective function can generate more stable results than the l0 penalty and smaller reconstruction errors than the l1 penalty. In addition, the convergence property of the proposed algorithm for sparse coding is also established. The experiments on applications in single image super-resolution and visual tracking demonstrate that the proposed method is more effective than other state-of-the-art methods.

Published in:

Neural Networks and Learning Systems, IEEE Transactions on  (Volume:24 ,  Issue: 6 )