By Topic

On Energy-to-Peak Filtering for Nonuniformly Sampled Nonlinear Systems: A Markovian Jump System Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hui Zhang ; Sci. Res. Acad., Shanghai Maritime Univ., Shanghai, China ; Yang Shi ; Junmin Wang

This paper focuses on the filter design for nonuniformly sampled nonlinear systems which can be approximated by Takagi-Sugeno (T-S) fuzzy systems. The sampling periods of the measurements are time varying, and the nonuniform observations of the outputs are modeled by a homogenous Markov chain. A mode-dependent estimator with a fast sampling frequency is proposed such that the estimation can track the signal to be estimated with the nonuniformly sampled outputs. The nonlinear systems are discretized with the fast sampling period. By using an augmentation technique, the corresponding stochastic estimation error system is obtained. By studying the stochastic stability and the energy-to-peak performance of the estimation error system, we derive the linear-matrix-inequality-based sufficient conditions. The parameters of the mode-dependent estimator can be calculated by using the proposed iterative algorithm. Two examples are used to demonstrate the design procedure and the efficacy of the proposed design method.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:22 ,  Issue: 1 )