By Topic

AC Losses in HTS Tapes and Devices With Transport Current Solved Through the Resistivity-Adaption Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chen Gu ; Dept. of Phys., Tsinghua Univ., Beijing, China ; Timing Qu ; Xiaofen Li ; Zhenghe Han

Alternating current (ac) losses in high-temperature superconductor tapes and devices with transport current are solved by using the resistivity-adaption algorithm (RAA). The most advanced feature of the RAA is that it enables the simulation of any model derived from the flux motion theory on finite-element analysis (FEA) packages that have an eddy current solver. The principle of the RAA, as well as its realization on the ANSYS FEA package, is introduced. The simulation begins with the calculation of the ac loss of an ellipse and of strips with aspect ratios ranging from 50 to 2000. The accuracy and efficiency of the calculation are verified through comparisons with the Norris theoretical curves. The possible errors and the method to overcome such errors are discussed. The most significant improvement in the proposed RAA from that discussed in a previous study is that the RAA was proven to be valid for calculating the field-dependent critical state model by using the descendant process from +Im to -Im. We then extend this method to calculate the transport ac loss of a stack of ellipses with Jc(B) characteristic from a typical Bi2223/Ag tape and the transport ac loss of a stack of strips with Jc(B) characteristic from a typical YBCO-coated conductor.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:23 ,  Issue: 2 )