By Topic

Secure Continuous Aggregation in Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Lei Yu ; Dept. of Electr. & Comput. Eng., Clemson Univ., Clemson, SC, USA ; Jianzhong Li ; Siyao Cheng ; Shuguang Xiong
more authors

Continuous aggregation is usually required in many sensor applications to obtain the temporal variation information of aggregates. However, in a hostile environment, the adversary could fabricate false temporal variation patterns of the aggregates by manipulating a series of aggregation results through compromised nodes. Existing secure aggregation schemes conduct one individual verification for each aggregation result, which could incur great accumulative communication cost and negative impact on transmission scheduling for continuous aggregation. In this paper, we identify distinct design issues for protecting continuous in-network aggregation and propose a novel scheme to detect false temporal variation patterns. Compared with the existing schemes, our scheme greatly reduces the verification cost by checking only a small part of aggregation results to verify the correctness of the temporal variation patterns in a time window. A sampling-based approach is used to check the aggregation results, which enables our scheme independent of any particular in-network aggregation protocols as opposed to existing schemes. We also propose a series of security mechanisms to protect the sampling process. Both theoretical analysis and simulations show the effectiveness and efficiency of our scheme.

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:25 ,  Issue: 3 )