By Topic

List Scheduling Algorithm for Heterogeneous Systems by an Optimistic Cost Table

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Arabnejad, H. ; Dept. de Eng. Inf., Lab. de Intel. Artificial e Cienc. dos Comput., Univ. do Porto, Porto, Portugal ; Barbosa, J.G.

Efficient application scheduling algorithms are important for obtaining high performance in heterogeneous computing systems. In this paper, we present a novel list-based scheduling algorithm called Predict Earliest Finish Time (PEFT) for heterogeneous computing systems. The algorithm has the same time complexity as the state-of-the-art algorithm for the same purpose, that is, O(v2.p) for v tasks and p processors, but offers significant makespan improvements by introducing a look-ahead feature without increasing the time complexity associated with computation of an optimistic cost table (OCT). The calculated value is an optimistic cost because processor availability is not considered in the computation. Our algorithm is only based on an OCT that is used to rank tasks and for processor selection. The analysis and experiments based on randomly generated graphs with various characteristics and graphs of real-world applications show that the PEFT algorithm outperforms the state-of-the-art list-based algorithms for heterogeneous systems in terms of schedule length ratio, efficiency, and frequency of best results.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:25 ,  Issue: 3 )