Cart (Loading....) | Create Account
Close category search window
 

Low-Rank Matrix Recovery From Errors and Erasures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yudong Chen ; Dept. of Electr. & Comput. Eng., Univ. of Texas at Austin, Austin, TX, USA ; Jalali, A. ; Sanghavi, S. ; Caramanis, C.

This paper considers the recovery of a low-rank matrix from an observed version that simultaneously contains both 1) erasures, most entries are not observed, and 2) errors, values at a constant fraction of (unknown) locations are arbitrarily corrupted. We provide a new unified performance guarantee on when minimizing nuclear norm plus l1 norm succeeds in exact recovery. Our result allows for the simultaneous presence of random and deterministic components in both the error and erasure patterns. By specializing this one single result in different ways, we recover (up to poly-log factors) as corollaries all the existing results in exact matrix completion, and exact sparse and low-rank matrix decomposition. Our unified result also provides the first guarantees for 1) recovery when we observe a vanishing fraction of entries of a corrupted matrix, and 2) deterministic matrix completion.

Published in:

Information Theory, IEEE Transactions on  (Volume:59 ,  Issue: 7 )

Date of Publication:

July 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.