Cart (Loading....) | Create Account
Close category search window
 

A SAX-Based Advanced Computational Tool for Assessment of Clustered Rooftop Solar PV Impacts on LV and MV Networks in Smart Grid

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Alam, M.J.E. ; Endeavour Energy Power Quality & Reliability Center, Univ. of Wollongong, Wollongong, NSW, Australia ; Muttaqi, K.M. ; Sutanto, D.

Future distribution networks with increasing level of solar PV penetration will be managed using smart grid technologies capable of producing appropriate and timely response during normal and abnormal operational events. Distribution feeder loads vary throughout the day according to the trend of consumption of the customers. Solar PV outputs fluctuate in proportion to irradiance level of sun. Simultaneous occurrence of both of these variations would result in various operating conditions that may lead to unexpected events, and would require a large amount of network data to be processed and analyzed for decision making. It is envisaged that such data will be available in the future grids with the availability of smart technologies and advanced communication in residential dwellings, commercial buildings and industrial complexes. In this paper, an advanced intelligent computational tool is developed to characterize and analyze the large amount of data associated with wide variations in network behavior using SAX (Symbolic Aggregate Approximation) and pattern recognition. The proposed tool is capable of dealing with network asymmetry, load unbalance, single-phase solar PV integration and their impacts on upstream networks and will assist in making right and timely decision to mitigate adverse impacts of solar PV. The proposed tool has been tested with a practical three-phase distribution system in Australia and can provide an extensive assessment with less computational efforts and time.

Published in:

Smart Grid, IEEE Transactions on  (Volume:4 ,  Issue: 1 )

Date of Publication:

March 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.