By Topic

Theoretic Bounds to Information Transmission Through Electrical Circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rovatti, R. ; ARCES, Univ. of Bologna, Bologna, Italy ; Mazzini, G. ; Passerini, C.

The paper investigates the fundamental limits of communication over electrical multiple-input-multiple-output (MIMO) networks in which information transmission is associated to energy exchanges. We first develop the computation of the Shannon capacity of a MIMO, wideband, frequency-dependent, time-invariant channel. This gives us the fundamental equations linking the achievable bit-rate, the needed power and its distribution over the necessary bandwidth. Such equations are then specialized to a general cascade of electrical stages and further detailed to tackle the case of a specific lumped elements circuit. With reference to such a circuit the effectiveness of the method is demonstrated by addressing simple cases which highlight the role of different kinds of coupling between electrical paths. Finally, the case of transmission over intra-chip buses realized with a real-world silicon technology is addressed, for which the effect of massive parallelism is discussed.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:60 ,  Issue: 9 )