Cart (Loading....) | Create Account
Close category search window

Realizations of a Special Class of Admittances With Strictly Lower Complexity Than Canonical Forms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chen, M.Z.Q. ; Dept. of Mech. Eng., Univ. of Hong Kong, Hong Kong, China ; Kai Wang ; Zhan Shu ; Chanying Li

This paper investigates the simplified realization problem of a special class of positive-real admittances similar to biquadratic functions but with an extra pole at the origin, which is widely used in the analysis of suspension systems. The results in this paper are motivated by passive mechanical control with the inerter. The concept of strictly lower complexity is first defined, whose indices in this paper are the total number of elements, the number of resistors (dampers), and the number of capacitors (inerters). We then derive a necessary and sufficient condition for this class of admittance to be realized by the networks that are of strictly lower complexity than the canonical realization by the Foster Preamble method. To solve this problem, it is shown that it suffices to consider the following: 1) networks with at most four elements, 2) irreducible five-element resistor-inductor (RL) networks, and 3) irreducible five-element resisitor-inductor-capacitor (RLC) networks. Other cases are shown to be impossible. By finding their corresponding network configurations through a series of constraints and deriving the corresponding realizability conditions, the final condition can be obtained. Finally, the U-V plane and numerical examples are provided to illustrate the theoretical results.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:60 ,  Issue: 9 )

Date of Publication:

Sept. 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.