By Topic

Sparse Signal Recovery Methods for Multiplexing PET Detector Readout

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chinn, G. ; Radiol. Dept., Stanford Univ., Stanford, CA, USA ; Olcott, P.D. ; Levin, C.S.

Nuclear medicine imaging detectors are commonly multiplexed to reduce the number of readout channels. Because the underlying detector signals have a sparse representation, sparse recovery methods such as compressed sensing may be used to develop new multiplexing schemes. Random methods may be used to create sensing matrices that satisfy the restricted isometry property. However, the restricted isometry property provides little guidance for developing multiplexing networks with good signal-to-noise recovery capability. In this work, we describe compressed sensing using a maximum likelihood framework and develop a new method for constructing multiplexing (sensing) matrices that can recover signals more accurately in a mean square error sense compared to sensing matrices constructed by random construction methods. Signals can then be recovered by maximum likelihood estimation constrained to the support recovered by either greedy ℓ0 iterative algorithms or ℓ1-norm minimization techniques. We show that this new method for constructing and decoding sensing matrices recovers signals with 4%-110% higher SNR than random Gaussian sensing matrices, up to 100% higher SNR than partial DCT sensing matrices 50%-2400% higher SNR than cross-strip multiplexing, and 22%-210% higher SNR than Anger multiplexing for photoelectric events.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:32 ,  Issue: 5 )