By Topic

Linear Coherent Estimation With Spatial Collaboration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kar, S. ; Dept. of Electr. Eng. & Comput. Sci., Syracuse Univ., Syracuse, NY, USA ; Varshney, P.K.

A power-constrained sensor network that consists of multiple sensor nodes and a fusion center (FC) is considered, where the goal is to estimate a random parameter of interest. In contrast to the distributed framework, the sensor nodes may be partially connected, where individual nodes can update their observations by (linearly) combining observations from other adjacent nodes. The updated observations are communicated to the FC by transmitting through a coherent multiple access channel. The optimal collaborative strategy is obtained by minimizing the expected mean-square error subject to power constraints at the sensor nodes. Each sensor can utilize its available power for both collaboration with other nodes and transmission to the FC. Two kinds of constraints, namely the cumulative and individual power constraints, are considered. The effects due to imperfect information about observation and channel gains are also investigated. The resulting performance improvement is illustrated analytically through the example of a homogeneous network with equicorrelated parameters. Assuming random geometric graph topology for collaboration, numerical results demonstrate a significant reduction in distortion even for a moderately connected network, particularly in the low local signal-to-noise ratio regime.

Published in:

Information Theory, IEEE Transactions on  (Volume:59 ,  Issue: 6 )