By Topic

Towards Efficient Virtual Appliance Delivery with Minimal Manageable Virtual Appliances

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kecskemeti, G. ; Distrib. & Parallel Syst. group, Univ. of Innsbruck, Innsbruck, Austria ; Terstyanszky, G. ; Kacsuk, P. ; Nemeth, Z.

Infrastructure as a Service systems use virtual appliances to initiate virtual machines. As virtual appliances encapsulate applications and services with their support environment, their delivery is the most expensive task of the virtual machine creation. Virtual appliance delivery is a well-discussed topic in the field of cloud computing. However, for high efficiency, current techniques require the modification of the underlying IaaS systems. To target the wider adoptability of these delivery solutions, this article proposes the concept of minimal manageable virtual appliances (MMVA) that are capable of updating and configuring their virtual machines without the need to modify IaaS systems. To create MMVAs, we propose to reduce manageable virtual appliances until they become MMVAs. This research also reveals a methodology for appliance developers to incorporate MMVAs in their own appliances to enable their efficient delivery and wider adoptability. Finally, the article evaluates the positive effects of MMVAs on an already existing delivery solution: the Automated Virtual appliance creation Service (AVS). Through experimental evaluation, we present that the application of MMVAs not only increases the adoptability of a delivery solution but it also significantly improves its performance in highly dynamic systems.

Published in:

Services Computing, IEEE Transactions on  (Volume:7 ,  Issue: 2 )