By Topic

Maximum-likelihood object tracking from multi-view video by combining homography and epipolar constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yixiao Yun ; Department of Signals and Systems, Chalmers University of Technology, Göteborg, 41296, Sweden ; Irene Yu-Hua Gu ; Hamid Aghajan

This paper addresses problem of object tracking in occlusion scenarios, where multiple uncalibrated cameras with overlapping fields of view are used. We propose a novel method where tracking is first done independently for each view and then tracking results are mapped between each pair of views to improve the tracking in individual views, under the assumptions that objects are not occluded in all views and move uprightly on a planar ground which may induce a homography relation between each pair of views. The tracking results are mapped by jointly exploiting the geometric constraints of homography, epipolar and vertical vanishing point. Main contributions of this paper include: (a) formulate a reference model of multi-view object appearance using region covariance for each view; (b) define a likelihood measure based on geodesics on a Riemannian manifold that is consistent with the destination view by mapping both the estimated positions and appearances of tracked object from other views; (c) locate object in each individual view based on maximum likelihood criterion from multi-view estimations of object position. Experiments have been conducted on videos from multiple uncalibrated cameras, where targets experience long-term partial or full occlusions. Comparison with two existing methods and performance evaluations are also made. Test results have shown effectiveness of the proposed method in terms of robustness against tracking drifts caused by occlusions.

Published in:

Distributed Smart Cameras (ICDSC), 2012 Sixth International Conference on

Date of Conference:

Oct. 30 2012-Nov. 2 2012