Cart (Loading....) | Create Account
Close category search window

Modified loss coefficients in the determination of optimum generation scheduling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hazarika, D. ; Dept. of Electr. Eng., Assam Eng. Coll., Assam, India ; Bordoloi, P.K.

A modified method is evolved to form the loss coefficients of an electrical power system network by decoupling load and generation and thereby creating additional fictitious load buses. The system losses are then calculated and co-ordinated to arrive at an optimum scheduling of generation using the standard co-ordination (λ iteration) equation. The method presented is superior to the ones currently available, in that it is applicable to a multimachine system with random variation of load and it accounts for limits in plant generations and line losses. The precise nature of results and the economy in the cost of energy production obtained by this method is quantified and presented

Published in:

Generation, Transmission and Distribution, IEE Proceedings C  (Volume:138 ,  Issue: 2 )

Date of Publication:

Mar 1991

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.