Cart (Loading....) | Create Account
Close category search window
 

Gradient sample argument weighting for robust image region description

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nilsson, J.-O. ; Signal Process. Lab., KTH R. Inst. of Technol., Stockholm, Sweden ; Handel, P.

The weighting of gradient sample arguments for the creation of descriptors of image regions is studied. The descriptors are interpreted as binned and weighted argument kernel density estimates and thereby their defining attributes are identified as the binning rules and the weighting. The weighting is further studied and four different weighting strategies are analyzed. The naive constant weighting is argued to have a poor robustness to image perturbations. As an answer to this, the customary gradient magnitude weighting is motivated. However, the short-comings of this approach are pointed out and two novel weighting strategies are suggested. The first suggested weighting gives a system parameter determining a distinctiveness to robustness trade-off with the customary magnitude weighting being a special case of it. The second suggested weighting gives a similar robustness as the first one, but at a lower computational cost. Finally, the effects of the different weighting strategies are demonstrated with real imagery data and synthetic perturbations.

Published in:

Electronics, Computing and Communication Technologies (CONECCT), 2013 IEEE International Conference on

Date of Conference:

17-19 Jan. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.