By Topic

Effective Neural Network Ensemble Approach for Improving Generalization Performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jing Yang ; Inst. of Intell. Sci. & Technol., Hohai Univ., Nanjing, China ; Xiaoqin Zeng ; Shuiming Zhong ; Shengli Wu

This paper, with an aim at improving neural networks' generalization performance, proposes an effective neural network ensemble approach with two novel ideas. One is to apply neural networks' output sensitivity as a measure to evaluate neural networks' output diversity at the inputs near training samples so as to be able to select diverse individuals from a pool of well-trained neural networks; the other is to employ a learning mechanism to assign complementary weights for the combination of the selected individuals. Experimental results show that the proposed approach could construct a neural network ensemble with better generalization performance than that of each individual in the ensemble combining with all the other individuals, and than that of the ensembles with simply averaged weights.

Published in:

Neural Networks and Learning Systems, IEEE Transactions on  (Volume:24 ,  Issue: 6 )