By Topic

Self-Tuning Control With a Filter and a Neural Compensator for a Class of Nonlinear Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yue Fu ; State Key Lab. of Synthetical Autom. for Process Ind., Northeastern Univ., Shenyang, China ; Tianyou Chai

Considering the mismatching of model-process order, in this brief, a self-tuning proportional-integral-derivative (PID)-like controller is proposed by combining a pole assignment self-tuning PID controller with a filter and a neural compensator. To design the PID controller, a reduced order model is introduced, whose linear parameters are identified by a normalized projection algorithm with a deadzone. The higher order nonlinearity is estimated by a high order neural network. The gains of the PID controller are obtained by pole assignment, which together with other parameters are tuned on-line. The bounded-input bounded-output stability condition and convergence condition of the closed-loop system are presented. Simulations are conducted on the continuous stirred tank reactors system. The results show the effectiveness of the proposed method.

Published in:

Neural Networks and Learning Systems, IEEE Transactions on  (Volume:24 ,  Issue: 5 )