By Topic

Novel Cost-Sensitive Approach to Improve the Multilayer Perceptron Performance on Imbalanced Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cristiano L. Castro ; Graduate Program in Electrical Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil ; Antônio P. Braga

Traditional learning algorithms applied to complex and highly imbalanced training sets may not give satisfactory results when distinguishing between examples of the classes. The tendency is to yield classification models that are biased towards the overrepresented (majority) class. This paper investigates this class imbalance problem in the context of multilayer perceptron (MLP) neural networks. The consequences of the equal cost (loss) assumption on imbalanced data are formally discussed from a statistical learning theory point of view. A new cost-sensitive algorithm (CSMLP) is presented to improve the discrimination ability of (two-class) MLPs. The CSMLP formulation is based on a joint objective function that uses a single cost parameter to distinguish the importance of class errors. The learning rule extends the Levenberg-Marquadt's rule, ensuring the computational efficiency of the algorithm. In addition, it is theoretically demonstrated that the incorporation of prior information via the cost parameter may lead to balanced decision boundaries in the feature space. Based on the statistical analysis of results on real data, our approach shows a significant improvement of the area under the receiver operating characteristic curve and G-mean measures of regular MLPs.

Published in:

IEEE Transactions on Neural Networks and Learning Systems  (Volume:24 ,  Issue: 6 )