Cart (Loading....) | Create Account
Close category search window
 

Medium-Voltage 12-Pulse Converter: Output Voltage Harmonic Compensation Using a Series APF

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hamad, M.S. ; Arab Acad. for Sci., Alexandria, Egypt ; Masoud, M.I. ; Williams, B.W.

In this paper, compensation of the dc-side voltage harmonics of a medium-voltage (MV) 12-pulse ac/dc converter is achieved using a series active power filter (APF). The output voltage harmonics are dependent on the converter firing delay angles and, consequently, on the specific power locus followed by the ac/dc converter. This power locus ensures minimum fifth and seventh harmonics (total rms) in the input current which provides minimum input current total harmonic distortion when the reactive power is less than 0.5 p.u. The series APF is connected between the load and the converter output via a magnetic amplifier to eliminate the dc current from the APF inverter, thus reducing inverter losses. Voltage harmonic compensation using a series APF, with and without a magnetic amplifier, is examined with both resistive and inductive loads. The simulation results for compensating a 3.3-kV MV 12-pulse converter system are experimentally verified using a scaled prototype 12-pulse converter with a series APF.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:61 ,  Issue: 1 )

Date of Publication:

Jan. 2014

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.