Cart (Loading....) | Create Account
Close category search window

Voice Activity Detection in Presence of Transient Noise Using Spectral Clustering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mousazadeh, S. ; Dept. of Electr. Eng., Technion - Israel Inst. of Technol., Haifa, Israel ; Cohen, I.

Voice activity detection has attracted significant research efforts in the last two decades. Despite much progress in designing voice activity detectors, voice activity detection (VAD) in presence of transient noise is a challenging problem. In this paper, we develop a novel VAD algorithm based on spectral clustering methods. We propose a VAD technique which is a supervised learning algorithm. This algorithm divides the input signal into two separate clusters (i.e., speech presence and speech absence frames). We use labeled data in order to adjust the parameters of the kernel used in spectral clustering methods for computing the similarity matrix. The parameters obtained in the training stage together with the eigenvectors of the normalized Laplacian of the similarity matrix and Gaussian mixture model (GMM) are utilized to compute the likelihood ratio needed for voice activity detection. Simulation results demonstrate the advantage of the proposed method compared to conventional statistical model-based VAD algorithms in presence of transient noise.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:21 ,  Issue: 6 )

Date of Publication:

June 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.