By Topic

Channel defect detection in food packages using integrated backscatter ultrasound imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
K. Raum ; Inst. of Med. Phys. & Biophys., Martin-Luther-Univ., Halle-Wittenberg, Germany ; A. Ozguler ; S. A. Morris ; W. D. O'Brien

Hermetically-sealed flexible food packages require very effective seal integrity testing to extend the shelf stability of thermally processed food. The initial goal of this study was to estimate the detection limits of laboratory-generated channels which simulate defects in food packages using pulse-echo ultrasonic imaging techniques. Packages with well characterized (via transmission optical microscopy) laboratory-generated channels that simulate defects with diameters between 9 and 325 /spl mu/m in the seal plane traversing the major axis of the heat seal were generated in heat-sealed microwavable retort-pouch plastic film (trilaminate). Pulse-echo techniques in the 13-17 MHz center frequency range were investigated. The samples were examined with a conventional B-mode imaging technique, which was found to be inadequate for subwavelength imaging of the types of typical channel defects found in shelf-stable food packages. Based on conventional B-mode image features, a new goal of this study was established to develop and evaluate an imaging technique which would exhibit subwavelength imaging capabilities. The new imaging technique called backscattered amplitude integral (BAI) is introduced here. It was observed that BAI-mode imaging has the ability for subwavelength detection of channel defects, e.g., detection of a 10-/spl mu/m diameter channel defect at a center frequency of 13.1 MHz (/spl lambda/=182 /spl mu/m).

Published in:

IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control  (Volume:45 ,  Issue: 1 )