By Topic

Communication avoiding and overlapping for numerical linear algebra

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Georganas, E. ; Dept. of Electr. Eng. & Comput. Sci., Univ. of California at Berkeley, Berkeley, CA, USA ; Gonzalez-Dominguez, J. ; Solomonik, E. ; Yili Zheng
more authors

To efficiently scale dense linear algebra problems to future exascale systems, communication cost must be avoided or overlapped. Communication-avoiding 2.5D algorithms improve scalability by reducing inter-processor data transfer volume at the cost of extra memory usage. Communication overlap attempts to hide messaging latency by pipelining messages and overlapping with computational work. We study the interaction and compatibility of these two techniques for two matrix multiplication algorithms (Cannon and SUMMA), triangular solve, and Cholesky factorization. For each algorithm, we construct a detailed performance model that considers both critical path dependencies and idle time. We give novel implementations of 2.5D algorithms with overlap for each of these problems. Our software employs UPC, a partitioned global address space (PGAS) language that provides fast one-sided communication. We show communication avoidance and overlap provide a cumulative benefit as core counts scale, including results using over 24K cores of a Cray XE6 system.

Published in:

High Performance Computing, Networking, Storage and Analysis (SC), 2012 International Conference for

Date of Conference:

10-16 Nov. 2012