By Topic

Feature Selection for Machine Learning Based Anomaly Detection in Industrial Control System Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mantere, M. ; VTT Tech. Res. Centre of Finland, Espoo, Finland ; Sailio, M. ; Noponen, S.

The nature of the traffic in industrial control system network is markedly different from more open networks. Industrial control system networks should be far more restricted in what types of traffic diversity is present. This enables the usage of approaches that are currently not as feasible in open environments, such as machine learning based anomaly detection. Without proper customization for the special requirements of industrial control system network environment many existing anomaly or misuse detection systems will perform sub-optimally. Machine learning based approach would reduce the amount of manual customization required for different restricted network environments of which an industrial control system network is an good example of. In this paper we present an initial analysis of data received from a ethernet network of a live running industrial site. This includes both control data and the data flowing between the control network and the office network. A set of possible features to be used for detecting anomalies is studied for this environment.

Published in:

Green Computing and Communications (GreenCom), 2012 IEEE International Conference on

Date of Conference:

20-23 Nov. 2012