By Topic

A Fully Automated System for Adherent Cells Microinjection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Becattini, G. ; Dept. of Adv. Robot., Italian Inst. of Technol., Genova, Italy ; Mattos, L.S. ; Caldwell, D.G.

This paper proposes an automated robotic system to perform cell microinjections to relieve human operators from this highly difficult and tedious manual procedure. The system, which uses commercial equipment currently found on most biomanipulation laboratories, consists of a multitask software framework combining computer vision and robotic control elements. The vision part features an injection pipette tracker and an automatic cell targeting system that is responsible for defining injection points within the contours of adherent cells in culture. The main challenge is the use of bright-field microscopy only, without the need for chemical markers normally employed to highlight the cells. Here, cells are identified and segmented using a threshold-based image processing technique working on defocused images. Fast and precise microinjection pipette positioning over the automatically defined targets is performed by a two-stage robotic system which achieves an average injection rate of 7.6 cells/min with a pipette positioning precision of 0.23 μm. The consistency of these microinjections and the performance of the visual targeting framework were experimentally evaluated using two cell lines (CHO-K1 and HEK) and over 500 cells. In these trials, the cells were automatically targeted and injected with a fluorescent marker, resulting in a correct cell detection rate of 87% and a successful marker delivery rate of 67.5%. These results demonstrate that the new system is capable of better performances than expert operators, highlighting its benefits and potential for large-scale application.

Published in:

Biomedical and Health Informatics, IEEE Journal of  (Volume:18 ,  Issue: 1 )