Cart (Loading....) | Create Account
Close category search window
 

Molecular beam epitaxial growth and optical properties of red-emitting (λ = 650 nm) InGaN/GaN disks-in-nanowires on silicon

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jahangir, S. ; Center for Photonics and Multiscale Nanomaterials, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109-2122, USA ; Mandl, M. ; Strassburg, M. ; Bhattacharya, P.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.4793300 

We have investigated the radiative properties of InGaN disks in GaN nanowires grown by plasma enhanced molecular beam epitaxy on (001) silicon substrates. The growth of the nanowire heterostructures has been optimized to maximize the radiative efficiency, or internal quantum efficiency (IQE), for photoluminescence emission at λ = 650 nm. It is found that the IQE increases significantly (by ∼10%) to 52%, when post-growth passivation of nanowire surface with silicon nitride or parylene is applied. The increase in efficiency is supported by radiative- and nonradiative lifetimes derived from data obtained from temperature dependent- and time-resolved photoluminescence measurements. Light emitting diodes with p-i-n disk-in-nanowire heterostructures passivated with parylene have been fabricated and characterized.

Published in:

Applied Physics Letters  (Volume:102 ,  Issue: 7 )

Date of Publication:

Feb 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.