Scheduled System Maintenance:
On Wednesday, July 29th, IEEE Xplore will undergo scheduled maintenance from 7:00-9:00 AM ET (11:00-13:00 UTC). During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Unsupervised Spectral Mixture Analysis with Hopfield Neural Network for hyperspectral images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Shaohui Mei ; Sch. of Electron. & Inf., Northwestern Polytech. Univ., Xi'an, China ; Mingyi He ; Zhiyong Wang ; Dagan Feng

Spectral Mixture Analysis (SMA) has been widely utilized to address the mixed-pixel problem in the quantitative analysis of hyperspectral remote sensing images. Recently Nonnegative Matrix Factorization (NMF) has been successfully utilized to simultaneously perform endmember extraction (EE) and abundance estimation (AE). In this paper, we formulate the solution of NMF by performing EE and AE iteratively. Based on our previous Hopfield Neural Network (HNN) based AE algorithm, an HNN is also constructed for EE to solve the multiplicative updating problem of NMF for SMA. As a result, SMA is conducted in an unsupervised manner and our algorithm is able to extract virtual endmembers without assuming the presence of spectrally pure constituents in hyperspectral scenes. We further extend such strategy to solve the constrained NMF (cNMF) models for SMA, where extra constraints are imposed to better model the mixed-pixel problem. Experimental results on both synthetic and real hyperspectral images demonstrate the effectiveness of our proposed HNN based unsupervised SMA algorithms.

Published in:

Image Processing (ICIP), 2012 19th IEEE International Conference on

Date of Conference:

Sept. 30 2012-Oct. 3 2012