By Topic

Superpixel level object recognition under local learning framework

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xuejiao Feng ; Sch. of Inf. & Commun. Eng., Dalian Univ. of Technol., Dalian, China ; Huchuan Lu ; Lihe Zhang

In this paper, we propose a simple yet efficient method for superpixel level object recognition on the bag-of-feature framework. Instead of using general classifiers for the superpixel categorization, we introduce local learning classifiers into our framework, so as to tackle the intraclass variation problem brought by superpixel based representations of objects. In addition, context information is used to make better performance by combining each superpixel with its most similar neighbors. We test our proposed method on Graz-02 datasets, and get results comparable to the state-of-the-art.

Published in:

Image Processing (ICIP), 2012 19th IEEE International Conference on

Date of Conference:

Sept. 30 2012-Oct. 3 2012