By Topic

Robust classification of traffic signs using multi-view cues

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hazelhoff, L. ; CycloMedia Technol. B.V., Waardenburg, Netherlands ; Creusen, I. ; de With, P.H.N.

Traffic sign inventories are created for road safety and maintenance based on street-level panoramic images. Due to the large capturing interval, large viewpoint deviations between the different capturings occur. These viewpoint variations complicate the classification procedure, which aims at the selection of the correct sign type, out of a high number of nearly similar sign types, typically resulting in misclassifications. This paper describes a novel approach for incorporating viewpoint information to the classification procedure, where the sign orientation is estimated based on dense matching. Afterwards, each sample is corrected to a frontal viewpoint, which is then classified. Finally, the sign type is obtained by weighted voting. Large-scale experiments including 2, 224 traffic signs show that this approach reduces the misclassification rate by about 33% compared to the single-view case.

Published in:

Image Processing (ICIP), 2012 19th IEEE International Conference on

Date of Conference:

Sept. 30 2012-Oct. 3 2012